课程学习                 申报信息
欢迎进入:

您所在的位置>>课程学习>>第三章 中值定...
第三章 中值定理及应用
中值定理的起源与发展

我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理。

微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“”,虽然我们对中值“”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用。

以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的理论基础,尤其是拉格朗日中值定理.它们建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数去研究函数的性态;中值定理的主要作用在于理论分析和证明;同时由柯西中值定理还可导出一个求极限的洛必达法则.中值定理的应用主要是以中值定理为基础,应用导数判断函数上升、下降、取极值、凹形、凸形和拐点等项的重要性态。从而能把握住函数图象的各种几何特征.此外,极值问题有重要的实际应用.在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法。这样一来,类似于求已知曲线上点的切线问题已获完美解决。但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础发展更多的工具。

 
课程学习